Abuzar Akhtar
B.tech CSE

bivariate-distribution-f8261824-be42-4caf-8d90-5728f1909b33

B i v a r i a t e D i s t r i b u t i o n B i v a r i a t e D i s t r i b u t i o n BivariateDistributionBivariate\,DistributionBivariateDistribution


Joint Distribution Function for Discrete Random Variables

For discrete random variables, the joint distribution is described by the joint probability density function (joint PDF). For two discrete random variables X X XXX and Y Y YYY, their joint PDF is denoted as f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) and it represents the probability density of both X X XXX and Y Y YYY taking on specific values x x xxx and y y yyy simultaneously.
The joint PDF f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) satisfies the following properties:
  1. Non-Negativity: f ( x , y ) 0 f ( x , y ) 0 f(x,y) >= 0f(x, y) \geq 0f(x,y)0 for all x x xxx and y y yyy.
  2. Total Probability: The sum of the joint probabilities over all possible values of X X XXX and Y Y YYY equals 1:
    x y f ( x , y ) = 1 x y f ( x , y ) = 1 sum_(x)sum_(y)f(x,y)=1\sum_{x}\sum_{y} f(x, y) = 1xyf(x,y)=1.

Example

Consider two discrete random variables, X X XXX and Y Y YYY, representing the outcomes of two fair six-sided dice rolls. The joint distribution function for this scenario can be represented as follows:
F X , Y ( x , y ) F X , Y ( x , y ) F_(X,Y)(x,y)F_{X, Y}(x, y)FX,Y(x,y) 1 2 3 4 5 6
1 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136
2 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136
3 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136
4 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136
5 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136
6 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136 1 36 1 36 (1)/(36)\frac{1}{36}136
F_(X,Y)(x,y) 1 2 3 4 5 6 1 (1)/(36) (1)/(36) (1)/(36) (1)/(36) (1)/(36) (1)/(36) 2 (1)/(36) (1)/(36) (1)/(36) (1)/(36) (1)/(36) (1)/(36) 3 (1)/(36) (1)/(36) (1)/(36) (1)/(36) (1)/(36) (1)/(36) 4 (1)/(36) (1)/(36) (1)/(36) (1)/(36) (1)/(36) (1)/(36) 5 (1)/(36) (1)/(36) (1)/(36) (1)/(36) (1)/(36) (1)/(36) 6 (1)/(36) (1)/(36) (1)/(36) (1)/(36) (1)/(36) (1)/(36)| $F_{X, Y}(x, y)$ | 1 | 2 | 3 | 4 | 5 | 6 | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | 1 | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | | 2 | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | | 3 | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | | 4 | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | | 5 | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | | 6 | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{1}{36}$ |

Interpretation

In the above example, each cell in the table represents the joint probability of the outcomes X X XXX and Y Y YYY. For instance, the value in the cell corresponding to X = 3 X = 3 X=3X = 3X=3 and Y = 4 Y = 4 Y=4Y = 4Y=4 is 1 36 1 36 (1)/(36)\frac{1}{36}136, indicating that the probability of getting X = 3 X = 3 X=3X = 3X=3 and Y = 4 Y = 4 Y=4Y = 4Y=4 simultaneously from the two dice rolls is 1 36 1 36 (1)/(36)\frac{1}{36}136.

Properties and Uses

The joint distribution function has several properties, such as non-negativity, monotonicity, and right continuity. It is fundamental in computing probabilities of specific events involving multiple random variables, analyzing dependencies between variables, and constructing probability distributions for statistical modelling.
In summary, the joint distribution function for discrete random variables provides valuable insights into the probabilities of various combinations of outcomes for multiple random variables. It is a crucial tool in probability theory and statistics, facilitating rigorous probabilistic analyses and modelling in a wide range of applications.
Question: Consider two discrete random variables X X XXX and Y Y YYY with the following joint distribution function:
F X Y ( x , y ) = { 0.1 for x = 1 and y = 2 0.2 for x = 1 and y = 3 0.3 for x = 2 and y = 2 0.4 for x = 2 and y = 3 0 otherwise F X Y ( x , y ) = 0.1 for  x = 1  and  y = 2 0.2 for  x = 1  and  y = 3 0.3 for  x = 2  and  y = 2 0.4 for  x = 2  and  y = 3 0 otherwise F_(XY)(x,y)={[0.1,"for "x=1" and "y=2],[0.2,"for "x=1" and "y=3],[0.3,"for "x=2" and "y=2],[0.4,"for "x=2" and "y=3],[0,"otherwise"]:}F_{XY}(x, y) = \begin{cases} 0.1 & \text{for } x = 1 \text{ and } y = 2 \\ 0.2 & \text{for } x = 1 \text{ and } y = 3 \\ 0.3 & \text{for } x = 2 \text{ and } y = 2 \\ 0.4 & \text{for } x = 2 \text{ and } y = 3 \\ 0 & \text{otherwise} \end{cases}FXY(x,y)={0.1for x=1 and y=20.2for x=1 and y=30.3for x=2 and y=20.4for x=2 and y=30otherwise
Find the probability mass function (PMF) of X X XXX and Y Y YYY individually.
 Solution:
The probability mass function (PMF) of a discrete random variable gives the probability that the random variable takes on each possible value. To find the PMFs of X X XXX and Y Y YYY, we need to calculate the individual probabilities for each value of X X XXX and Y Y YYY based on the joint distribution function.

PMF of X X XXX

To find the PMF of X X XXX, we sum the probabilities of all the values of Y Y YYY for each possible value of X X XXX:
For X = 1 X = 1 X=1X = 1X=1:
P ( X = 1 ) = F X Y ( 1 , 2 ) + F X Y ( 1 , 3 ) = 0.1 + 0.2 = 0.3 P ( X = 1 ) = F X Y ( 1 , 2 ) + F X Y ( 1 , 3 ) = 0.1 + 0.2 = 0.3 P(X=1)=F_(XY)(1,2)+F_(XY)(1,3)=0.1+0.2=0.3P(X = 1) = F_{XY}(1,2) + F_{XY}(1,3) = 0.1 + 0.2 = 0.3P(X=1)=FXY(1,2)+FXY(1,3)=0.1+0.2=0.3
For X = 2 X = 2 X=2X = 2X=2:
P ( X = 2 ) = F X Y ( 2 , 2 ) + F X Y ( 2 , 3 ) = 0.3 + 0.4 = 0.7 P ( X = 2 ) = F X Y ( 2 , 2 ) + F X Y ( 2 , 3 ) = 0.3 + 0.4 = 0.7 P(X=2)=F_(XY)(2,2)+F_(XY)(2,3)=0.3+0.4=0.7P(X = 2) = F_{XY}(2,2) + F_{XY}(2,3) = 0.3 + 0.4 = 0.7P(X=2)=FXY(2,2)+FXY(2,3)=0.3+0.4=0.7
The PMF of X X XXX is given by:
P ( X ) = { 0.3 for X = 1 0.7 for X = 2 0 for other values of X P ( X ) = 0.3 for  X = 1 0.7 for  X = 2 0 for other values of  X P(X)={[0.3,"for "X=1],[0.7,"for "X=2],[0,"for other values of "X]:}P(X) = \begin{cases} 0.3 & \text{for } X = 1 \\ 0.7 & \text{for } X = 2 \\ 0 & \text{for other values of } X \end{cases}P(X)={0.3for X=10.7for X=20for other values of X

PMF of Y Y YYY

To find the PMF of Y Y YYY, we sum the probabilities of all the values of X X XXX for each possible value of Y Y YYY:
For Y = 2 Y = 2 Y=2Y = 2Y=2:
P ( Y = 2 ) = F X Y ( 1 , 2 ) + F X Y ( 2 , 2 ) = 0.1 + 0.3 = 0.4 P ( Y = 2 ) = F X Y ( 1 , 2 ) + F X Y ( 2 , 2 ) = 0.1 + 0.3 = 0.4 P(Y=2)=F_(XY)(1,2)+F_(XY)(2,2)=0.1+0.3=0.4P(Y = 2) = F_{XY}(1,2) + F_{XY}(2,2) = 0.1 + 0.3 = 0.4P(Y=2)=FXY(1,2)+FXY(2,2)=0.1+0.3=0.4
For Y = 3 Y = 3 Y=3Y = 3Y=3:
P ( Y = 3 ) = F X Y ( 1 , 3 ) + F X Y ( 2 , 3 ) = 0.2 + 0.4 = 0.6 P ( Y = 3 ) = F X Y ( 1 , 3 ) + F X Y ( 2 , 3 ) = 0.2 + 0.4 = 0.6 P(Y=3)=F_(XY)(1,3)+F_(XY)(2,3)=0.2+0.4=0.6P(Y = 3) = F_{XY}(1,3) + F_{XY}(2,3) = 0.2 + 0.4 = 0.6P(Y=3)=FXY(1,3)+FXY(2,3)=0.2+0.4=0.6
The PMF of Y Y YYY is given by:
P ( Y ) = { 0.4 for Y = 2 0.6 for Y = 3 0 for other values of Y P ( Y ) = 0.4 for  Y = 2 0.6 for  Y = 3 0 for other values of  Y P(Y)={[0.4,"for "Y=2],[0.6,"for "Y=3],[0,"for other values of "Y]:}P(Y) = \begin{cases} 0.4 & \text{for } Y = 2 \\ 0.6 & \text{for } Y = 3 \\ 0 & \text{for other values of } Y \end{cases}P(Y)={0.4for Y=20.6for Y=30for other values of Y
\,
\,
Question: Consider two discrete random variables X X XXX and Y Y YYY with the joint probability mass function given by:
f X Y ( x , y ) = { c x y for x = 1 , 2 and y = 1 , 2 0 otherwise f X Y ( x , y ) = c x y for  x = 1 , 2  and  y = 1 , 2 0 otherwise f_(XY)(x,y)={[cxy,"for "x=1","2" and "y=1","2],[0,"otherwise"]:}f_{XY}(x, y) = \begin{cases} cxy & \text{for } x = 1, 2 \text{ and } y = 1, 2 \\ 0 & \text{otherwise} \end{cases}fXY(x,y)={cxyfor x=1,2 and y=1,20otherwise
where c c ccc is a constant. Find the value of c c ccc and calculate the probability mass function (PMF) of X X XXX and Y Y YYY individually.
 Solution:
To find the value of c c ccc, we need to ensure that the sum of probabilities over all possible values of X X XXX and Y Y YYY equals 1, as it must be for a valid probability mass function.
First, let's find the value of c c ccc:
The sum of probabilities over all possible values of X X XXX and Y Y YYY must be 1:
1 = x = 1 2 y = 1 2 f X Y ( x , y ) = c ( 1 1 ) + c ( 1 2 ) + c ( 2 1 ) + c ( 2 2 ) = 6 c 1 = x = 1 2 y = 1 2 f X Y ( x , y ) = c ( 1 1 ) + c ( 1 2 ) + c ( 2 1 ) + c ( 2 2 ) = 6 c {:[1=sum_(x=1)^(2)sum_(y=1)^(2)f_(XY)(x","y)],[=c(1*1)+c(1*2)+c(2*1)+c(2*2)],[=6c]:}\begin{aligned} 1 &= \sum_{x=1}^{2} \sum_{y=1}^{2} f_{XY}(x, y) \\ &= c(1 \cdot 1) + c(1 \cdot 2) + c(2 \cdot 1) + c(2 \cdot 2) \\ &= 6c \end{aligned}1=x=12y=12fXY(x,y)=c(11)+c(12)+c(21)+c(22)=6c
Therefore, c = 1 6 c = 1 6 c=(1)/(6)c = \frac{1}{6}c=16.
Now, let's calculate the probability mass function (PMF) of X X XXX and Y Y YYY individually.

PMF of X X XXX

To find the PMF of X X XXX, we sum the probabilities of all the values of Y Y YYY for each possible value of X X XXX:
For X = 1 X = 1 X=1X = 1X=1:
P ( X = 1 ) = f X Y ( 1 , 1 ) + f X Y ( 1 , 2 ) = 1 6 1 1 + 1 6 1 2 = 1 3 P ( X = 1 ) = f X Y ( 1 , 1 ) + f X Y ( 1 , 2 ) = 1 6 1 1 + 1 6 1 2 = 1 3 P(X=1)=f_(XY)(1,1)+f_(XY)(1,2)=(1)/(6)*1*1+(1)/(6)*1*2=(1)/(3)P(X = 1) = f_{XY}(1, 1) + f_{XY}(1, 2) = \frac{1}{6} \cdot 1 \cdot 1 + \frac{1}{6} \cdot 1 \cdot 2 = \frac{1}{3}P(X=1)=fXY(1,1)+fXY(1,2)=1611+1612=13
For X = 2 X = 2 X=2X = 2X=2:
P ( X = 2 ) = f X Y ( 2 , 1 ) + f X Y ( 2 , 2 ) = 1 6 2 1 + 1 6 2 2 = 1 3 P ( X = 2 ) = f X Y ( 2 , 1 ) + f X Y ( 2 , 2 ) = 1 6 2 1 + 1 6 2 2 = 1 3 P(X=2)=f_(XY)(2,1)+f_(XY)(2,2)=(1)/(6)*2*1+(1)/(6)*2*2=(1)/(3)P(X = 2) = f_{XY}(2, 1) + f_{XY}(2, 2) = \frac{1}{6} \cdot 2 \cdot 1 + \frac{1}{6} \cdot 2 \cdot 2 = \frac{1}{3}P(X=2)=fXY(2,1)+fXY(2,2)=1621+1622=13
The PMF of X X XXX is given by:
P ( X ) = { 1 3 for X = 1 1 3 for X = 2 0 for other values of X P ( X ) = 1 3 for  X = 1 1 3 for  X = 2 0 for other values of  X P(X)={[(1)/(3),"for "X=1],[(1)/(3),"for "X=2],[0,"for other values of "X]:}P(X) = \begin{cases} \frac{1}{3} & \text{for } X = 1 \\ \frac{1}{3} & \text{for } X = 2 \\ 0 & \text{for other values of } X \end{cases}P(X)={13for X=113for X=20for other values of X

PMF of Y Y YYY

To find the PMF of Y Y YYY, we sum the probabilities of all the values of X X XXX for each possible value of Y Y YYY:
For Y = 1 Y = 1 Y=1Y = 1Y=1:
P ( Y = 1 ) = f X Y ( 1 , 1 ) + f X Y ( 2 , 1 ) = 1 6 1 1 + 1 6 2 1 = 1 6 + 1 3 = 1 2 P ( Y = 1 ) = f X Y ( 1 , 1 ) + f X Y ( 2 , 1 ) = 1 6 1 1 + 1 6 2 1 = 1 6 + 1 3 = 1 2 P(Y=1)=f_(XY)(1,1)+f_(XY)(2,1)=(1)/(6)*1*1+(1)/(6)*2*1=(1)/(6)+(1)/(3)=(1)/(2)P(Y = 1) = f_{XY}(1, 1) + f_{XY}(2, 1) = \frac{1}{6} \cdot 1 \cdot 1 + \frac{1}{6} \cdot 2 \cdot 1 = \frac{1}{6} + \frac{1}{3} = \frac{1}{2}P(Y=1)=fXY(1,1)+fXY(2,1)=1611+1621=16+13=12
For Y = 2 Y = 2 Y=2Y = 2Y=2:
P ( Y = 2 ) = f X Y ( 1 , 2 ) + f X Y ( 2 , 2 ) = 1 6 1 2 + 1 6 2 2 = 1 3 + 1 3 = 2 3 P ( Y = 2 ) = f X Y ( 1 , 2 ) + f X Y ( 2 , 2 ) = 1 6 1 2 + 1 6 2 2 = 1 3 + 1 3 = 2 3 P(Y=2)=f_(XY)(1,2)+f_(XY)(2,2)=(1)/(6)*1*2+(1)/(6)*2*2=(1)/(3)+(1)/(3)=(2)/(3)P(Y = 2) = f_{XY}(1, 2) + f_{XY}(2, 2) = \frac{1}{6} \cdot 1 \cdot 2 + \frac{1}{6} \cdot 2 \cdot 2 = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}P(Y=2)=fXY(1,2)+fXY(2,2)=1612+1622=13+13=23
The PMF of Y Y YYY is given by:
P ( Y ) = { 1 2 for Y = 1 2 3 for Y = 2 0 for other values of Y P ( Y ) = 1 2 for  Y = 1 2 3 for  Y = 2 0 for other values of  Y P(Y)={[(1)/(2),"for "Y=1],[(2)/(3),"for "Y=2],[0,"for other values of "Y]:}P(Y) = \begin{cases} \frac{1}{2} & \text{for } Y = 1 \\ \frac{2}{3} & \text{for } Y = 2 \\ 0 & \text{for other values of } Y \end{cases}P(Y)={12for Y=123for Y=20for other values of Y
In summary, the constant c c ccc is 1 6 1 6 (1)/(6)\frac{1}{6}16, and the probability mass functions (PMFs) of X X XXX and Y Y YYY for the given joint probability mass function are as follows:
P ( X ) = { 1 3 for X = 1 1 3 for X = 2 0 for other values of X P ( X ) = 1 3 for  X = 1 1 3 for  X = 2 0 for other values of  X P(X)={[(1)/(3),"for "X=1],[(1)/(3),"for "X=2],[0,"for other values of "X]:}P(X) = \begin{cases} \frac{1}{3} & \text{for } X = 1 \\ \frac{1}{3} & \text{for } X = 2 \\ 0 & \text{for other values of } X \end{cases}P(X)={13for X=113for X=20for other values of X
P ( Y ) = { 1 2 for Y = 1 2 3 for Y = 2 0 for other values of Y P ( Y ) = 1 2 for  Y = 1 2 3 for  Y = 2 0 for other values of  Y P(Y)={[(1)/(2),"for "Y=1],[(2)/(3),"for "Y=2],[0,"for other values of "Y]:}P(Y) = \begin{cases} \frac{1}{2} & \text{for } Y = 1 \\ \frac{2}{3} & \text{for } Y = 2 \\ 0 & \text{for other values of } Y \end{cases}P(Y)={12for Y=123for Y=20for other values of Y
\,
\,
=>\RightarrowFrom the joint PDF, we can derive marginal probability density functions, denoted as f X ( x ) f X ( x ) f_(X)(x)f_X(x)fX(x) and f Y ( y ) f Y ( y ) f_(Y)(y)f_Y(y)fY(y), which provide the probabilities of each random variable independently.
rarr\rightarrowThe marginal probability density function f X ( x ) f X ( x ) f_(X)(x)f_X(x)fX(x) of X X XXX is obtained by summing the joint probabilities over all possible values of Y Y YYY:
f X ( x ) = y f ( x , y ) f X ( x ) = y f ( x , y ) f_(X)(x)=sum_(y)f(x,y)f_X(x) = \sum_{y} f(x, y)fX(x)=yf(x,y)
rarr\rightarrowSimilarly, the marginal probability density function f Y ( y ) f Y ( y ) f_(Y)(y)f_Y(y)fY(y) of Y Y YYY is derived by summing the joint probabilities over all possible values of X X XXX:
f Y ( y ) = x f ( x , y ) f Y ( y ) = x f ( x , y ) f_(Y)(y)=sum_(x)f(x,y)f_Y(y) = \sum_{x} f(x, y)fY(y)=xf(x,y)
\,
\,
\,

Joint Probability Density Function for Continuous Random Variables

For continuous random variables X X XXX and Y Y YYY, the joint probability density function (joint PDF) is denoted as f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) and represents the probability density of both X X XXX and Y Y YYY simultaneously taking on specific values x x xxx and y y yyy.
The joint PDF f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) satisfies the following properties:
1. Non-Negativity: f ( x , y ) 0 f ( x , y ) 0 f(x,y) >= 0f(x, y) \geq 0f(x,y)0 for all x x xxx and y y yyy.
2. Total Probability: The integral of the joint PDF over the entire plane equals 1:

R 2 f ( x , y ) d x d y = 1 R 2 f ( x , y ) d x d y = 1 ∬_(R^(2))f(x,y)dxdy=1\iint_{\mathbb{R}^2} f(x, y) \, dx \, dy = 1R2f(x,y)dxdy=1.

The properties for the joint PDF of continuous random variables are analogous to those of the joint probability mass function (PMF) for discrete random variables. However, since continuous random variables take on an uncountably infinite number of possible values within a range, we use integrals instead of sums to calculate probabilities over the entire range of X X XXX and Y Y YYY.
=>\RightarrowFrom the joint PDF, we can obtain the marginal probability density functions, denoted as f X ( x ) f X ( x ) f_(X)(x)f_X(x)fX(x) and f Y ( y ) f Y ( y ) f_(Y)(y)f_Y(y)fY(y), which provide the probabilities of each random variable independently.
rarr\rightarrowThe marginal probability density function f X ( x ) f X ( x ) f_(X)(x)f_X(x)fX(x) of X X XXX is derived by integrating the joint PDF over all possible values of Y Y YYY:
f X ( x ) = f ( x , y ) d y f X ( x ) = f ( x , y ) d y f_(X)(x)=int_(-oo)^(oo)f(x,y)dyf_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dyfX(x)=f(x,y)dy
rarr\rightarrowSimilarly, the marginal probability density function f Y ( y ) f Y ( y ) f_(Y)(y)f_Y(y)fY(y) of Y Y YYY is obtained by integrating the joint PDF over all possible values of X X XXX:
f Y ( y ) = f ( x , y ) d x f Y ( y ) = f ( x , y ) d x f_(Y)(y)=int_(-oo)^(oo)f(x,y)dxf_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dxfY(y)=f(x,y)dx
The concept of the joint PDF for continuous random variables is essential in probability theory and statistics, as it allows us to model and analyze the relationships between multiple continuous variables in various real-world applications.
Question: The joint probability density function (joint PDF) of two continuous random variables X X XXX and Y Y YYY is given by:
f ( x , y ) = { k x y , for 0 x 3 and 1 y 4 0 , otherwise f ( x , y ) = k x y , for  0 x 3  and  1 y 4 0 , otherwise f(x,y)={[kxy",","for "0 <= x <= 3" and "1 <= y <= 4],[0",","otherwise"]:}f(x, y) = \begin{cases} kxy, & \text{for } 0 \leq x \leq 3 \text{ and } 1 \leq y \leq 4 \\ 0, & \text{otherwise} \end{cases}f(x,y)={kxy,for 0x3 and 1y40,otherwise
a) Find the value of k k kkk such that f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) satisfies the property of total probability.
b) Calculate the probability P ( 1 x 2 , 2 y 3 ) P ( 1 x 2 , 2 y 3 ) P(1 <= x <= 2,2 <= y <= 3)P(1 \leq x \leq 2, 2 \leq y \leq 3)P(1x2,2y3).
 Solution:
a) To find the value of k k kkk, we need to ensure that the joint PDF f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) satisfies the property of total probability, i.e., the integral over the entire plane equals 1:
all space f ( x , y ) d x d y = 1 all space f ( x , y ) d x d y = 1 ∬_("all space")f(x,y)dxdy=1\iint_{\text{all space}} f(x, y) \, dx \, dy = 1all spacef(x,y)dxdy=1
Since the joint PDF is zero outside the range 0 x 3 0 x 3 0 <= x <= 30 \leq x \leq 30x3 and 1 y 4 1 y 4 1 <= y <= 41 \leq y \leq 41y4, the integral becomes:
0 3 1 4 k x y d y d x = 1 0 3 1 4 k x y d y d x = 1 int_(0)^(3)int_(1)^(4)kxydydx=1\int_{0}^{3} \int_{1}^{4} kxy \, dy \, dx = 10314kxydydx=1
Evaluate the inner integral first:
1 4 k x y d y = k x 1 4 y d y = k x [ 1 2 y 2 ] 1 4 = k x ( 16 2 1 2 ) = 7 k x 1 4 k x y d y = k x 1 4 y d y = k x 1 2 y 2 1 4 = k x 16 2 1 2 = 7 k x int_(1)^(4)kxydy=kxint_(1)^(4)ydy=kx[(1)/(2)y^(2)]_(1)^(4)=kx((16)/(2)-(1)/(2))=7kx\int_{1}^{4} kxy \, dy = kx \int_{1}^{4} y \, dy = kx \left[\frac{1}{2}y^2\right]_{1}^{4} = kx \left(\frac{16}{2} - \frac{1}{2}\right) = 7kx14kxydy=kx14ydy=kx[12y2]14=kx(16212)=7kx
Now, integrate with respect to x x xxx:
0 3 7 k x d x = 7 k 0 3 x d x = 7 k [ 1 2 x 2 ] 0 3 = 7 k 9 2 = 63 2 k 0 3 7 k x d x = 7 k 0 3 x d x = 7 k 1 2 x 2 0 3 = 7 k 9 2 = 63 2 k int_(0)^(3)7kxdx=7kint_(0)^(3)xdx=7k[(1)/(2)x^(2)]_(0)^(3)=7k*(9)/(2)=(63)/(2)k\int_{0}^{3} 7kx \, dx = 7k \int_{0}^{3} x \, dx = 7k \left[\frac{1}{2}x^2\right]_{0}^{3} = 7k \cdot \frac{9}{2} = \frac{63}{2}k037kxdx=7k03xdx=7k[12x2]03=7k92=632k
Setting this equal to 1:
63 2 k = 1 63 2 k = 1 (63)/(2)k=1\frac{63}{2}k = 1632k=1
k = 2 63 k = 2 63 k=(2)/(63)k = \frac{2}{63}k=263
Now, we have the value of k k kkk, which is k = 2 63 k = 2 63 k=(2)/(63)k = \frac{2}{63}k=263.
b) To calculate the probability P ( 1 x 2 , 2 y 3 ) P ( 1 x 2 , 2 y 3 ) P(1 <= x <= 2,2 <= y <= 3)P(1 \leq x \leq 2, 2 \leq y \leq 3)P(1x2,2y3), we need to find the double integral of the joint PDF over the given region:
P ( 1 x 2 , 2 y 3 ) = 1 x 2 , 2 y 3 2 63 x y d y d x P ( 1 x 2 , 2 y 3 ) = 1 x 2 , 2 y 3 2 63 x y d y d x P(1 <= x <= 2,2 <= y <= 3)=∬_(1 <= x <= 2,2 <= y <= 3)(2)/(63)*xydydxP(1 \leq x \leq 2, 2 \leq y \leq 3) = \iint_{1 \leq x \leq 2, 2 \leq y \leq 3} \frac{2}{63} \cdot xy \, dy \, dxP(1x2,2y3)=1x2,2y3263xydydx
Evaluate the inner integral first:
2 3 2 63 x y d y = 2 63 x 2 3 y d y = 2 63 x [ 1 2 y 2 ] 2 3 = 2 63 x ( 9 2 2 ) = 2 63 x 5 2 = 5 63 x 2 3 2 63 x y d y = 2 63 x 2 3 y d y = 2 63 x 1 2 y 2 2 3 = 2 63 x 9 2 2 = 2 63 x 5 2 = 5 63 x int_(2)^(3)(2)/(63)*xydy=(2)/(63)xint_(2)^(3)ydy=(2)/(63)x[(1)/(2)y^(2)]_(2)^(3)=(2)/(63)x((9)/(2)-2)=(2)/(63)x*(5)/(2)=(5)/(63)x\int_{2}^{3} \frac{2}{63} \cdot xy \, dy = \frac{2}{63}x \int_{2}^{3} y \, dy = \frac{2}{63}x \left[\frac{1}{2}y^2\right]_{2}^{3} = \frac{2}{63}x \left(\frac{9}{2} - 2\right) = \frac{2}{63}x \cdot \frac{5}{2} = \frac{5}{63}x23263xydy=263x23ydy=263x[12y2]23=263x(922)=263x52=563x
Now, integrate with respect to x x xxx:
P ( 1 x 2 , 2 y 3 ) = 1 2 5 63 x d x P ( 1 x 2 , 2 y 3 ) = 1 2 5 63 x d x P(1 <= x <= 2,2 <= y <= 3)=int_(1)^(2)(5)/(63)xdxP(1 \leq x \leq 2, 2 \leq y \leq 3) = \int_{1}^{2} \frac{5}{63}x \, dxP(1x2,2y3)=12563xdx
P ( 1 x 2 , 2 y 3 ) = 5 63 1 2 x d x P ( 1 x 2 , 2 y 3 ) = 5 63 1 2 x d x P(1 <= x <= 2,2 <= y <= 3)=(5)/(63)int_(1)^(2)xdxP(1 \leq x \leq 2, 2 \leq y \leq 3) = \frac{5}{63} \int_{1}^{2} x \, dxP(1x2,2y3)=56312xdx
P ( 1 x 2 , 2 y 3 ) = 5 63 [ 1 2 x 2 ] 1 2 P ( 1 x 2 , 2 y 3 ) = 5 63 1 2 x 2 1 2 P(1 <= x <= 2,2 <= y <= 3)=(5)/(63)[(1)/(2)x^(2)]_(1)^(2)P(1 \leq x \leq 2, 2 \leq y \leq 3) = \frac{5}{63} \left[\frac{1}{2}x^2\right]_{1}^{2}P(1x2,2y3)=563[12x2]12
P ( 1 x 2 , 2 y 3 ) = 5 63 ( 4 2 1 2 ) P ( 1 x 2 , 2 y 3 ) = 5 63 4 2 1 2 P(1 <= x <= 2,2 <= y <= 3)=(5)/(63)((4)/(2)-(1)/(2))P(1 \leq x \leq 2, 2 \leq y \leq 3) = \frac{5}{63} \left(\frac{4}{2} - \frac{1}{2}\right)P(1x2,2y3)=563(4212)
P ( 1 x 2 , 2 y 3 ) = 5 63 3 2 P ( 1 x 2 , 2 y 3 ) = 5 63 3 2 P(1 <= x <= 2,2 <= y <= 3)=(5)/(63)*(3)/(2)P(1 \leq x \leq 2, 2 \leq y \leq 3) = \frac{5}{63} \cdot \frac{3}{2}P(1x2,2y3)=56332
P ( 1 x 2 , 2 y 3 ) = 5 126 P ( 1 x 2 , 2 y 3 ) = 5 126 P(1 <= x <= 2,2 <= y <= 3)=(5)/(126)P(1 \leq x \leq 2, 2 \leq y \leq 3) = \frac{5}{126}P(1x2,2y3)=5126
Therefore, the probability P ( 1 x 2 , 2 y 3 ) P ( 1 x 2 , 2 y 3 ) P(1 <= x <= 2,2 <= y <= 3)P(1 \leq x \leq 2, 2 \leq y \leq 3)P(1x2,2y3) is 5 126 5 126 (5)/(126)\frac{5}{126}5126 or approximately 0.0397.
\,
Question: Suppose the joint probability density function of two random variables, X X XXX and Y Y YYY, is given by:
f ( x , y ) = { k ( 2 x + y ) for 0 x 1 , 0 y 2 0 otherwise f ( x , y ) = k ( 2 x + y ) for  0 x 1 , 0 y 2 0 otherwise f(x,y)={[k(2x+y),"for "0 <= x <= 1","0 <= y <= 2],[0,"otherwise"]:}f(x, y) = \begin{cases} k(2x + y) & \text{for } 0 \leq x \leq 1, 0 \leq y \leq 2 \\ 0 & \text{otherwise} \end{cases}f(x,y)={k(2x+y)for 0x1,0y20otherwise
a) Find the value of constant k k kkk that makes f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) a valid joint probability density function.
b) Calculate the marginal probability density functions, f X ( x ) f X ( x ) f_(X)(x)f_X(x)fX(x) and f Y ( y ) f Y ( y ) f_(Y)(y)f_Y(y)fY(y), for random variables X X XXX and Y Y YYY respectively.
c) Determine the probability that both X X XXX and Y Y YYY are greater than 0.5, i.e., find P ( X > 0.5 and Y > 0.5 ) P ( X > 0.5  and  Y > 0.5 ) P(X > 0.5" and "Y > 0.5)P(X > 0.5 \text{ and } Y > 0.5)P(X>0.5 and Y>0.5).
 Solution:
a) To find the value of constant k k kkk, we need to ensure that the joint probability density function f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) satisfies the properties of a valid joint density function. The total probability over the entire range of X X XXX and Y Y YYY must equal 1. Hence, we evaluate the double integral of f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) over the given region and set it equal to 1:
0 1 0 2 k ( 2 x + y ) d y d x = 1 0 1 0 2 k ( 2 x + y ) d y d x = 1 int_(0)^(1)int_(0)^(2)k(2x+y)dydx=1\int_{0}^{1} \int_{0}^{2} k(2x + y) \, dy \, dx = 10102k(2x+y)dydx=1
Evaluating the integral:
0 1 [ k x y + 1 2 k y 2 ] 0 2 d x = 1 0 1 k x y + 1 2 k y 2 0 2 d x = 1 int_(0)^(1)[kxy+(1)/(2)ky^(2)]_(0)^(2)dx=1\int_{0}^{1} \left[ kxy + \frac{1}{2}ky^2 \right]_{0}^{2} \, dx = 101[kxy+12ky2]02dx=1
0 1 ( 2 k x + 2 k ) d x = 1 0 1 ( 2 k x + 2 k ) d x = 1 int_(0)^(1)(2kx+2k)dx=1\int_{0}^{1} (2kx + 2k) \, dx = 101(2kx+2k)dx=1
[ k x 2 + 2 k x ] 0 1 = 1 k x 2 + 2 k x 0 1 = 1 [kx^(2)+2kx]_(0)^(1)=1\left[ kx^2 + 2kx \right]_{0}^{1} = 1[kx2+2kx]01=1
k + 2 k = 1 k + 2 k = 1 k+2k=1k + 2k = 1k+2k=1
3 k = 1 3 k = 1 3k=13k = 13k=1
k = 1 3 k = 1 3 k=(1)/(3)k = \frac{1}{3}k=13
b) To find the marginal probability density functions f X ( x ) f X ( x ) f_(X)(x)f_X(x)fX(x) and f Y ( y ) f Y ( y ) f_(Y)(y)f_Y(y)fY(y), we integrate f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) over the entire range of the other variable:
For f X ( x ) f X ( x ) f_(X)(x)f_X(x)fX(x):
f X ( x ) = f ( x , y ) d y f X ( x ) = f ( x , y ) d y f_(X)(x)=int_(-oo)^(oo)f(x,y)dyf_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dyfX(x)=f(x,y)dy
Since f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) is non-zero only when 0 y 2 0 y 2 0 <= y <= 20 \leq y \leq 20y2, the integral is taken over this range:
f X ( x ) = 0 2 1 3 ( 2 x + y ) d y f X ( x ) = 0 2 1 3 ( 2 x + y ) d y f_(X)(x)=int_(0)^(2)(1)/(3)(2x+y)dyf_X(x) = \int_{0}^{2} \frac{1}{3}(2x + y) \, dyfX(x)=0213(2x+y)dy
f X ( x ) = [ 1 3 ( 2 x y + 1 2 y 2 ) ] 0 2 f X ( x ) = 1 3 ( 2 x y + 1 2 y 2 ) 0 2 f_(X)(x)=[(1)/(3)(2xy+(1)/(2)y^(2))]_(0)^(2)f_X(x) = \left[ \frac{1}{3}(2xy + \frac{1}{2}y^2) \right]_{0}^{2}fX(x)=[13(2xy+12y2)]02
f X ( x ) = 1 3 ( 4 x + 2 ) f X ( x ) = 1 3 ( 4 x + 2 ) f_(X)(x)=(1)/(3)(4x+2)f_X(x) = \frac{1}{3}(4x + 2)fX(x)=13(4x+2)
For f Y ( y ) f Y ( y ) f_(Y)(y)f_Y(y)fY(y):
f Y ( y ) = f ( x , y ) d x f Y ( y ) = f ( x , y ) d x f_(Y)(y)=int_(-oo)^(oo)f(x,y)dxf_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dxfY(y)=f(x,y)dx
Since f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) is non-zero only when 0 x 1 0 x 1 0 <= x <= 10 \leq x \leq 10x1, the integral is taken over this range:
f Y ( y ) = 0 1 1 3 ( 2 x + y ) d x f Y ( y ) = 0 1 1 3 ( 2 x + y ) d x f_(Y)(y)=int_(0)^(1)(1)/(3)(2x+y)dxf_Y(y) = \int_{0}^{1} \frac{1}{3}(2x + y) \, dxfY(y)=0113(2x+y)dx
f Y ( y ) = [ 1 3 ( x 2 + x y ) ] 0 1 f Y ( y ) = 1 3 ( x 2 + x y ) 0 1 f_(Y)(y)=[(1)/(3)(x^(2)+xy)]_(0)^(1)f_Y(y) = \left[ \frac{1}{3}(x^2 + xy) \right]_{0}^{1}fY(y)=[13(x2+xy)]01
f Y ( y ) = 1 3 ( 1 + y ) f Y ( y ) = 1 3 ( 1 + y ) f_(Y)(y)=(1)/(3)(1+y)f_Y(y) = \frac{1}{3}(1 + y)fY(y)=13(1+y)
c) To find the probability that both X X XXX and Y Y YYY are greater than 0.5, we need to calculate the joint probability:
P ( X > 0.5 and Y > 0.5 ) = 0.5 1 0.5 2 1 3 ( 2 x + y ) d y d x P ( X > 0.5  and  Y > 0.5 ) = 0.5 1 0.5 2 1 3 ( 2 x + y ) d y d x P(X > 0.5" and "Y > 0.5)=int_(0.5)^(1)int_(0.5)^(2)(1)/(3)(2x+y)dydxP(X > 0.5 \text{ and } Y > 0.5) = \int_{0.5}^{1} \int_{0.5}^{2} \frac{1}{3}(2x + y) \, dy \, dxP(X>0.5 and Y>0.5)=0.510.5213(2x+y)dydx
P ( X > 0.5 and Y > 0.5 ) = 1 3 0.5 1 [ 2 x y + 1 2 y 2 ] 0.5 2 d x P ( X > 0.5  and  Y > 0.5 ) = 1 3 0.5 1 2 x y + 1 2 y 2 0.5 2 d x P(X > 0.5" and "Y > 0.5)=(1)/(3)int_(0.5)^(1)[2xy+(1)/(2)y^(2)]_(0.5)^(2)dxP(X > 0.5 \text{ and } Y > 0.5) = \frac{1}{3} \int_{0.5}^{1} \left[ 2xy + \frac{1}{2}y^2 \right]_{0.5}^{2} \, dxP(X>0.5 and Y>0.5)=130.51[2xy+12y2]0.52dx
P ( X > 0.5 and Y > 0.5 ) = 1 3 0.5 1 ( 2 x + 1 ) d x P ( X > 0.5  and  Y > 0.5 ) = 1 3 0.5 1 ( 2 x + 1 ) d x P(X > 0.5" and "Y > 0.5)=(1)/(3)int_(0.5)^(1)(2x+1)dxP(X > 0.5 \text{ and } Y > 0.5) = \frac{1}{3} \int_{0.5}^{1} (2x + 1) \, dxP(X>0.5 and Y>0.5)=130.51(2x+1)dx
P ( X > 0.5 and Y > 0.5 ) = 1 3 [ x 2 + x ] 0.5 1 P ( X > 0.5  and  Y > 0.5 ) = 1 3 x 2 + x 0.5 1 P(X > 0.5" and "Y > 0.5)=(1)/(3)[x^(2)+x]_(0.5)^(1)P(X > 0.5 \text{ and } Y > 0.5) = \frac{1}{3} \left[ x^2 + x \right]_{0.5}^{1}P(X>0.5 and Y>0.5)=13[x2+x]0.51
P ( X > 0.5 and Y > 0.5 ) = 1 3 ( 1 + 1 ( 1 4 + 1 2 ) ) P ( X > 0.5  and  Y > 0.5 ) = 1 3 1 + 1 1 4 + 1 2 P(X > 0.5" and "Y > 0.5)=(1)/(3)(1+1-((1)/(4)+(1)/(2)))P(X > 0.5 \text{ and } Y > 0.5) = \frac{1}{3} \left( 1 + 1 - \left( \frac{1}{4} + \frac{1}{2} \right) \right)P(X>0.5 and Y>0.5)=13(1+1(14+12))
P ( X > 0.5 and Y > 0.5 ) = 5 12 P ( X > 0.5  and  Y > 0.5 ) = 5 12 P(X > 0.5" and "Y > 0.5)=(5)/(12)P(X > 0.5 \text{ and } Y > 0.5) = \frac{5}{12}P(X>0.5 and Y>0.5)=512
Therefore, the probability that both X X XXX and Y Y YYY are greater than 0.5 is 5 12 5 12 (5)/(12)\frac{5}{12}512.+++
\,
\,

Conditional Density Function for Joint Distribution

The conditional density function (also known as the conditional probability density function or conditional PDF) is a fundamental concept used to describe the distribution of one random variable given the value of another random variable in a joint distribution. It allows us to model the relationship between two random variables and understand how one variable influences the other under specific conditions.
Let's consider two continuous random variables, X X XXX and Y Y YYY, with a joint probability density function f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y). The conditional density function of X X XXX given that Y = y Y = y Y=yY = yY=y, denoted as f X | Y ( x | y ) f X | Y ( x | y ) f_(X|Y)(x|y)f_{X|Y}(x|y)fX|Y(x|y), represents the density of X X XXX when we have information about the value of Y Y YYY being equal to y y yyy.
The conditional density function is defined as:
f X | Y ( x | y ) = f ( x , y ) f Y ( y ) f X | Y ( x | y ) = f ( x , y ) f Y ( y ) f_(X|Y)(x|y)=(f(x,y))/(f_(Y)(y))f_{X|Y}(x|y) = \frac{f(x, y)}{f_Y(y)}fX|Y(x|y)=f(x,y)fY(y)
where:
  • f X | Y ( x | y ) f X | Y ( x | y ) f_(X|Y)(x|y)f_{X|Y}(x|y)fX|Y(x|y) is the conditional density function of X X XXX given Y = y Y = y Y=yY = yY=y.
  • f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) is the joint probability density function of X X XXX and Y Y YYY.
  • f Y ( y ) f Y ( y ) f_(Y)(y)f_Y(y)fY(y) is the marginal probability density function of Y Y YYY.
The conditional density function is helpful in various applications, such as predictive modeling, Bayesian statistics, and inference. It allows us to compute the probability of one random variable taking on a specific value given the knowledge of the value of another random variable. In the context of continuous distributions, the conditional density function can be used to find conditional probabilities within specific intervals or to compute conditional expectations and variances.
For discrete random variables, the concept of conditional probability mass function is used, and the definition is slightly different. In both cases, the conditional density function plays a crucial role in understanding the relationship between two random variables in a joint distribution.
\,
\,
Question:
Consider two continuous random variables X X XXX and Y Y YYY with a joint probability density function given by:
f ( x , y ) = { 6 x y , for 0 x 1 and 0 y 2 0 , otherwise f ( x , y ) = 6 x y , for  0 x 1  and  0 y 2 0 , otherwise f(x,y)={[6xy",","for "0 <= x <= 1" and "0 <= y <= 2],[0",","otherwise"]:}f(x, y) = \begin{cases} 6xy, & \text{for } 0 \leq x \leq 1 \text{ and } 0 \leq y \leq 2 \\ 0, & \text{otherwise} \end{cases}f(x,y)={6xy,for 0x1 and 0y20,otherwise
a) Determine the conditional density function f X | Y ( x | y ) f X | Y ( x | y ) f_(X|Y)(x|y)f_{X|Y}(x|y)fX|Y(x|y) of X X XXX given that Y = y Y = y Y=yY = yY=y.
b) Find the conditional probability P ( X 0.5 | Y = 1 ) P ( X 0.5 | Y = 1 ) P(X <= 0.5|Y=1)P(X \leq 0.5 | Y = 1)P(X0.5|Y=1).
 Solution:
a) The conditional density function f X | Y ( x | y ) f X | Y ( x | y ) f_(X|Y)(x|y)f_{X|Y}(x|y)fX|Y(x|y) of X X XXX given that Y = y Y = y Y=yY = yY=y is given by:
f X | Y ( x | y ) = f ( x , y ) f Y ( y ) f X | Y ( x | y ) = f ( x , y ) f Y ( y ) f_(X|Y)(x|y)=(f(x,y))/(f_(Y)(y))f_{X|Y}(x|y) = \frac{f(x, y)}{f_Y(y)}fX|Y(x|y)=f(x,y)fY(y)
where f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) is the joint probability density function of X X XXX and Y Y YYY, and f Y ( y ) f Y ( y ) f_(Y)(y)f_Y(y)fY(y) is the marginal probability density function of Y Y YYY.
The marginal probability density function f Y ( y ) f Y ( y ) f_(Y)(y)f_Y(y)fY(y) can be obtained by integrating the joint density function f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) with respect to x x xxx over the entire range of x x xxx:
f Y ( y ) = 0 1 6 x y d x f Y ( y ) = 0 1 6 x y d x f_(Y)(y)=int_(0)^(1)6xydxf_Y(y) = \int_{0}^{1} 6xy \, dxfY(y)=016xydx
f Y ( y ) = 6 y 0 1 x d x f Y ( y ) = 6 y 0 1 x d x f_(Y)(y)=6yint_(0)^(1)xdxf_Y(y) = 6y \int_{0}^{1} x \, dxfY(y)=6y01xdx
f Y ( y ) = 6 y [ 1 2 x 2 ] 0 1 f Y ( y ) = 6 y 1 2 x 2 0 1 f_(Y)(y)=6y[(1)/(2)x^(2)]_(0)^(1)f_Y(y) = 6y \left[\frac{1}{2}x^2\right]_{0}^{1}fY(y)=6y[12x2]01
f Y ( y ) = 6 y 1 2 = 3 y f Y ( y ) = 6 y 1 2 = 3 y f_(Y)(y)=6y*(1)/(2)=3yf_Y(y) = 6y \cdot \frac{1}{2} = 3yfY(y)=6y12=3y
Now, we can calculate the conditional density function f X | Y ( x | y ) f X | Y ( x | y ) f_(X|Y)(x|y)f_{X|Y}(x|y)fX|Y(x|y) by substituting the values of f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) and f Y ( y ) f Y ( y ) f_(Y)(y)f_Y(y)fY(y) into the formula:
f X | Y ( x | y ) = 6 x y 3 y f X | Y ( x | y ) = 6 x y 3 y f_(X|Y)(x|y)=(6xy)/(3y)f_{X|Y}(x|y) = \frac{6xy}{3y}fX|Y(x|y)=6xy3y
f X | Y ( x | y ) = 2 x f X | Y ( x | y ) = 2 x f_(X|Y)(x|y)=2xf_{X|Y}(x|y) = 2xfX|Y(x|y)=2x
Therefore, the conditional density function of X X XXX given that Y = y Y = y Y=yY = yY=y is f X | Y ( x | y ) = 2 x f X | Y ( x | y ) = 2 x f_(X|Y)(x|y)=2xf_{X|Y}(x|y) = 2xfX|Y(x|y)=2x.
b) To find the conditional probability P ( X 0.5 | Y = 1 ) P ( X 0.5 | Y = 1 ) P(X <= 0.5|Y=1)P(X \leq 0.5 | Y = 1)P(X0.5|Y=1), we need to integrate the conditional density function f X | Y ( x | y = 1 ) f X | Y ( x | y = 1 ) f_(X|Y)(x|y=1)f_{X|Y}(x|y = 1)fX|Y(x|y=1) over the interval [ 0 , 0.5 ] [ 0 , 0.5 ] [0,0.5][0, 0.5][0,0.5]:
P ( X 0.5 | Y = 1 ) = 0 0.5 f X | Y ( x | y = 1 ) d x P ( X 0.5 | Y = 1 ) = 0 0.5 f X | Y ( x | y = 1 ) d x P(X <= 0.5|Y=1)=int_(0)^(0.5)f_(X|Y)(x|y=1)dxP(X \leq 0.5 | Y = 1) = \int_{0}^{0.5} f_{X|Y}(x|y = 1) \, dxP(X0.5|Y=1)=00.5fX|Y(x|y=1)dx
P ( X 0.5 | Y = 1 ) = 0 0.5 2 x d x P ( X 0.5 | Y = 1 ) = 0 0.5 2 x d x P(X <= 0.5|Y=1)=int_(0)^(0.5)2xdxP(X \leq 0.5 | Y = 1) = \int_{0}^{0.5} 2x \, dxP(X0.5|Y=1)=00.52xdx
P ( X 0.5 | Y = 1 ) = [ x 2 ] 0 0.5 P ( X 0.5 | Y = 1 ) = x 2 0 0.5 P(X <= 0.5|Y=1)=[x^(2)]_(0)^(0.5)P(X \leq 0.5 | Y = 1) = \left[x^2\right]_{0}^{0.5}P(X0.5|Y=1)=[x2]00.5
P ( X 0.5 | Y = 1 ) = 0.5 2 0 2 = 0.25 P ( X 0.5 | Y = 1 ) = 0.5 2 0 2 = 0.25 P(X <= 0.5|Y=1)=0.5^(2)-0^(2)=0.25P(X \leq 0.5 | Y = 1) = 0.5^2 - 0^2 = 0.25P(X0.5|Y=1)=0.5202=0.25
Therefore, the conditional probability P ( X 0.5 | Y = 1 ) P ( X 0.5 | Y = 1 ) P(X <= 0.5|Y=1)P(X \leq 0.5 | Y = 1)P(X0.5|Y=1) is 0.25.

Bivariate Normal Distribution

The bivariate normal distribution is a probability distribution for two continuous random variables that are jointly normally distributed. It is a special case of the multivariate normal distribution, which describes the joint distribution of multiple correlated random variables. In the bivariate normal distribution, the two variables are assumed to have a bivariate normal relationship, meaning their joint distribution is characterized by a bell-shaped, elliptical contour.
The bivariate normal distribution is fully defined by the means ( μ X μ X mu _(X)\mu_XμX and μ Y μ Y mu _(Y)\mu_YμY), standard deviations ( σ X σ X sigma _(X)\sigma_XσX and σ Y σ Y sigma _(Y)\sigma_YσY), and the correlation coefficient ( ρ ρ rho\rhoρ) between the two variables. The correlation coefficient determines the degree of linear relationship between X X XXX and Y Y YYY, ranging from -1 (perfect negative correlation) to 1 (perfect positive correlation). When ρ = 0 ρ = 0 rho=0\rho = 0ρ=0, X X XXX and Y Y YYY are uncorrelated.
The probability density function (PDF) of the bivariate normal distribution is given by:
f ( x , y ) = 1 2 π σ X σ Y 1 ρ 2 exp ( 1 2 ( 1 ρ 2 ) [ ( x μ X ) 2 σ X 2 2 ρ ( x μ X ) ( y μ Y ) σ X σ Y + ( y μ Y ) 2 σ Y 2 ] ) f ( x , y ) = 1 2 π σ X σ Y 1 ρ 2 exp 1 2 ( 1 ρ 2 ) ( x μ X ) 2 σ X 2 2 ρ ( x μ X ) ( y μ Y ) σ X σ Y + ( y μ Y ) 2 σ Y 2 f(x,y)=(1)/((2pisigma _(X)sigma _(Y)sqrt(1-rho^(2))))exp(-(1)/(2(1-rho^(2)))[((x-mu _(X))^(2))/(sigma_(X)^(2))-2rho((x-mu _(X))(y-mu _(Y)))/(sigma _(X)sigma _(Y))+((y-mu _(Y))^(2))/(sigma_(Y)^(2))])f(x, y) = \frac{1}{{2\pi \sigma_X \sigma_Y \sqrt{1-\rho^2}}} \exp\left( -\frac{1}{2(1-\rho^2)} \left[ \frac{(x-\mu_X)^2}{\sigma_X^2} - 2\rho\frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X \sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} \right] \right)f(x,y)=12πσXσY1ρ2exp(12(1ρ2)[(xμX)2σX22ρ(xμX)(yμY)σXσY+(yμY)2σY2])
where:
  • x x xxx and y y yyy are the values of the two variables.
  • μ X μ X mu _(X)\mu_XμX and μ Y μ Y mu _(Y)\mu_YμY are the means of X X XXX and Y Y YYY, respectively.
  • σ X σ X sigma _(X)\sigma_XσX and σ Y σ Y sigma _(Y)\sigma_YσY are the standard deviations of X X XXX and Y Y YYY, respectively.
  • ρ ρ rho\rhoρ is the correlation coefficient between X X XXX and Y Y YYY.
The bivariate normal distribution is widely used in various fields, including statistics, econometrics, finance, and engineering, when dealing with two continuous variables that exhibit a linear relationship. It allows for modeling the joint distribution of two variables and understanding their correlation and dependence. The bivariate normal distribution is also essential in statistical modeling, hypothesis testing, and constructing confidence intervals for the parameters involved.